Effects of Cu on the microstructural and mechanical properties of sputter deposited Ni-Ti thin films
نویسندگان
چکیده
The microstructure of sputter deposited Ti-rich Ni-Ti thin films doped with Cu in the range 020.4 at.% and annealed for 1 h at 500 and 600°C has been investigated and correlated with the mechanical properties of the films measured by depth-sensing nanoindentation. X-ray diffraction analysis showed the microstructural evolution of Ni-Ti thin films when doped with Cu and annealed at different temperatures. Heat treatments promoted the nucleation and growth of Ti2Ni precipitates in Ti-rich Ni-Ti thin films, which affected the stability of austenitic and martensitic phases at ambient temperature. Doping with Cu caused the formation of Ti(Ni, Cu)2 plate precipitates, which became more finely and densely dispersed in the grains with increasing Cu content. TEM analysis showed a columnar grain morphology extended through the whole films thickness, while with increasing Cu content a noticeable lateral grain refinement was induced by segregation of a (Ni, Cu)-rich phase to grain boundaries. The nano-hardness increased almost linearly with increasing Cu content owing to this grain refinement, though differences between samples annealed at different temperatures were found which could be related to the evolution of Ti(Ni, Cu)2 plate precipitates with annealing temperature and Cu content. The Young’s modulus exhibited a similar dependence on Cu content as nano-hardness, though no significant differences were observed with increasing annealing temperatures.
منابع مشابه
Mechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering
Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...
متن کاملTribological behavior of sputter-deposited MoSX/Ni coatings
AbstractSputtered MoS2 coatings have been mostly used as a solid lubricant. In this investigation, MoSx/Ni composite coatings with Ni contents varying from 0 to 22 % were deposited onto steel substrate using a DC magnetron sputter process. The MoS2/Ni ratio in the coatings was controlled by sputtering the composite targets. The composition, microstructure, and mechanical properties of the...
متن کاملPhysical Properties of Reactively Sputter-Deposited C-N Thin Films
This work aims to prepare and study amorphous carbon nitride (CNx) films. Films were deposited by reactive magnetron radiofrequency (RF) sputtering from graphite target in argon and nitrogen mixture discharge at room temperature. The ratio of the gas flow rate was varied from 0.1 to 1. Deposited films were found to be amorphous. Highest Nitrogen concentration achieved was 42 atomic percent whic...
متن کاملEffect of Cu Content on TiN-Cu Nanocomposite Film Properties: Structural and Hardness Studies
Titanium nitride-Copper (TiN-Cu) nanocomposite films were deposited onto stainless steel substrate using hollow cathode discharge ion plating technique. The influence of Cu content in the range of 2-7 at.% on the microstructure, morphology and mechanical properties of deposited films were investigated. Structural properties of the films were studied by X-ray diffraction pattern. Topography of t...
متن کاملEffect of Substrate Bias Voltage and Ti Doping on the Tribological Properties of DC Magnetron Sputtered MoSx Coatings
Molybdenum disulfide (MoS2) is one of the most widely used solid lubricants. In this work, composite MoSx/Ti coatings were deposited by direct-current magnetron sputter ion plating onto plain carbon steel substrates. The MoSx/Ti ratio in the coatings was controlled by sputtering the composite targets. The composition, microstructure, and mechanical properties of the coatings were explored using...
متن کامل